Van Hoogmoed L, Roberts G, Snyder JR, et al.
Vet Radiol Ultrasound 1998;39:117-122.
In the llama, signs of colic are obscure and may be exhibited as persistent sternal recumbency and anorexia even in the presence of a surgical lesion. Diagnostic methods for evaluation of abdominal disorders are limited. As a result, surgical intervention may be prolonged and increase the risk of mortality and postoperative complications. The objective of this study was to determine the feasibility of computed tomography to evaluate the llama intestinal tract. Eighteen hours prior to the computed tomography scan, six llamas were given barium sulfate (15%) via an orogastric tube. Following induction of general anesthesia, the llamas were positioned in sternal recumbency, and 10 mm contiguous slices were obtained from the diaphragm to the tuber ischiadicum. Structures that were consistently identified included the first, second, and third compartments (C1, 2, and 3), small intestine, spiral colon, and ascending colon. C1 was easily identified in the cranial aspect of the abdomen due to its large size relative to the other compartments and characteristic saccules. C2 was located cranial, ventral, and to the right of C1, while C3 was visualized as a tubular structure to the right and ventral to C1 and C2, C3 was traced caudally until it turned dorsally and continued cranially to a dilated ampulla in the right cranial abdomen delineating the entrance to the small intestine. The spiral colon was identified consistently in the left ventral caudal abdomen. Structures that could not be conclusively identified included the cecum and mesenteric lymph nodes. Computed tomography allowed a consistent evaluation of the major intestinal structures associated with colic in the llama. Thus, computed tomography is a potentially valuable noninvasive diagnostic tool to effectively evaluate the abdominal cavity and differentiate medical from surgical lesions in the llama.